counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in co-packaged optics (31)

Sunday
May242020

Ethernet Alliance on 800G and the next Ethernet rate

It may have taken the industry five years to get 400 Gigabit Ethernet (GbE) modules shipping, but for Mark Nowell, Advisory Board Chair at the Ethernet Alliance, the long gestation period is understandable given the innovation that has been required.

Mark Nowell

The industry has had to cram complex technology into a small form factor for 400GbE while meeting the requirements of two very different end-customers: webscale players and communications service providers.

Click to read more ...

Thursday
Mar192020

Intel combines optics to its Tofino 2 switch chip

Part 1: Co-packaged Ethernet switch 

The advent of co-packaged optics has moved a step closer with Intels demonstration of a 12.8-terabit Ethernet switch chip with optical input-output (I/O).  


Source: Intel.

The design couples a Barefoot Tofino 2 switch chip to up to 16 optical tiles’ - each tile, a 1.6-terabit silicon photonics die - for a total I/O of 25.6 terabits.

Its an easy upgrade to add our next-generation 25.6-terabit [switch chip] which is coming shortly,” says Ed Doe, Intels vice president, connectivity group, general manager, Barefoot division. 

Intel acquired switch-chip maker, Barefoot, seven months ago after which it started the co-packaging optics project.

Intel also revealed that it is in the process of qualifying four new optical transceivers - a 400Gbase-DR4, a 200-gigabit FR4, a 100-gigabit FR1 and a 100Gbase-LR4 - to add to its portfolio of 100-gigabit PSM4 and CWDM4 modules.

Click to read more ...

Wednesday
Oct162019

ECOC 2019 industry reflections

Gazettabyte is asking industry figures for their thoughts after attending the recent ECOC show, held in Dublin. In particular, what developments and trends they noted, what they learned and what, if anything, surprised them. Here are the first responses from Huawei, OFS Fitel and ADVA.  


James Wangyin, senior product expert, access and transmission product line at Huawei  

At ECOC, one technology that is becoming a hot topic is machine learning. There is much work going on to model devices and perform optimisation at the system level.

And while there was much discussion about 400-gigabit and 800-gigabit coherent optical transmissions, 200-gigabit will continue to be the mainstream speed for the coming three-to-five years.  

Click to read more ...

Wednesday
Sep182019

Companies gear up to make 800 Gig modules a reality

Nine companies have established a multi-source agreement (MSA) to develop optical specifications for 800-gigabit pluggable modules.

 

Maxim Kuschnerov

The MSA has been created to address the continual demand for more networking capacity in the data centre, a need that is doubling roughly every two years. The largest switch chips deployed have a 12.8 terabit-per-second (Tbps) switching capacity while 25.6-terabit and 51-terabit devices are in development. 

“The MSA members believe that for 25.6Tbps and 51.2Tbps switching silicon, 800-gigabit interconnects are required to deliver the required footprint and density,” says Maxim Kuschnerov, a spokesperson for the 800G Pluggable MSA.

A 1-rack-unit (1RU) 25.6-terabit switch platform will use 32 such 800-gigabit modules while a 51.2-terabit 2RU platform will require 64.

Click to read more ...

Monday
May132019

Co-packaged optics to debut with 25.6 terabit switch chips

The second article in a series on co-packaged optics.

Part 2: Broadcom - a switch-chip vendor 

The hyperscalers require ever more switching capacity in their data centres to scale the applications they run. A hierarchy of connected switches fitted with optical interfaces is used to provide the pathways that link the tens of thousands of servers found in data centres.

Silicon vendors are responding to this need by doubling the capacity of their switch chips every two years. The largest switch chips have a 12.8-terabit capacity and the first 25.6-terabit devices are expected next year. This relentless pace, however, is one that the optical module makers are struggling to match. 

Source: Gazettabyte

“It is a problem for the optics industry,” says Robert Stone, Distinguished Engineer at leading switch chip player, Broadcom. “The cadence at which we can evolve silicon generally moves a lot faster than the optics guys can monetise a generation of investment, and then reinvest it.”

Click to read more ...

Wednesday
May012019

Lumentum completes sale of certain datacom lines to CIG 

Brandon Collings, CTO of Lumentum, talks CIG, 400ZR and 400ZR+, COBO, co-packaged optics and why silicon photonics is not going to change the world.

 

Lumentum has completed the sale of part of its datacom product lines to design and manufacturing company, Cambridge Industries Group. 

The sale will lower the company's quarterly revenues by between $20 million to $25 million. Lumentum also said that it will stop selling datacom transceivers in the next year to 18 months.

Brandon CollingsThe move highlights how fierce competition and diminishing margins from the sale of client-side modules is causing optical component companies to rethink their strategies.

Lumentum’s focus is now to supply its photonic chips to the module makers, including CIG. “From a value-add point of view, there is a lot more value in selling those chips than the modules,” says Brandon Collings, CTO of Lumentum.

Click to read more ...

Thursday
Feb212019

Ayar Labs prepares for the era of co-packaged optics 

The first of two articles on co-packaged optics.

Part 1: Ayar Labs

Ayar Labs is readying its co-packaged optics technology for scaled production in the second half of 2020. So says CEO Charlie Wuischpard who joined the start-up in late 2018 after it secured $24 million in funding to bring its products to market.

Co-packaged optics refers to the intimate coupling of optics with an ASIC in one package. Such tightly-coupled optics promises to overcome the growing system challenges associated with linking an ASIC’s high-speed signals to pluggable optics residing on a platform’s faceplate.

Charlie Wuischpard Wuischpard joined Ayar Labs from Intel where he led the supercomputing segment within the company’s data centre group. Wuischpard also led Intel’s disaggregated rack initiative.

“In both these, silicon photonics plays a huge role in enabling future architectures and future designs,” he says.

Ayar Labs raised its funding after demonstrating successfully its optical designs: a silicon-photonics optical chiplet, dubbed Teraphy, and its Supernova external laser source. 

Click to read more ...