counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in co-packaged optics (31)

Wednesday
Sep222021

First co-packaged optics switches set for next year 

Ranovus says two of its lead customers will deploy co-packaged optics next year.

They will deploy 25.6-terabit Ethernet switch chips but these will be proof-of-concept designs rather than volume deployments.

Hamid ArabzadehThe deployments will be used to assess the software and gain experience with their maintenance including replacing optics if needed.

“I do think 2024 is going to be the volume year,” says Hamid Arabzadeh, CEO of Ranovus, who expects to announce the customers before the year-end.

Click to read more ...

Wednesday
Sep012021

Marvell’s latest acquisition: switch-chip firm Innovium

  • Innovium will be Marvell's fifth acquisition in four years  

Marvell is buying switch-chip maker, Innovium, for $1.1 billion to bolster its revenues from the lucrative data centre market.

Nariman Yousefi

The combination of Innovium with Inphi, Marvell’s most recent $10 billion acquisition, will enable the company to co-package optics alongside the high-bandwidth, low-latency switch chips.

“Inphi has quite a bit of experience shipping silicon photonics with the ColorZ and ColorZ II [modules],” says Nariman Yousefi, executive vice president, automotive, coherent DSP and switch group at Marvell. “And we have programmes inside the company to do co-packaged optics as well.”

Click to read more ...

Tuesday
Jun292021

Intel details its 800-gigabit DR8 optical module

The company earmarks 2023 for its first co-packaged optics product

Intel is sampling an 800-gigabit DR8 in an OSFP pluggable optical module, as announced at the recent OFC virtual conference and show.

Robert Blum“It is the first time we have done a pluggable module with 100-gigabit electrical serdes [serialisers/ deserialisers],” says Robert Blum, Intel’s senior director, marketing and new business. “The transition for the industry to 100-gigabit serdes is a big step.”

The 800-gigabit DR8 module has eight electrical 100-gigabit interfaces and eight single-mode 100-gigabit optical channels in each transmission direction.

The attraction of the single-module DR8 design, says Blum, is that it effectively comprises two 400-gigabit DR4 modules. “The optical interface allows you the flexibility that you can break it out into 400-gigabit DR4,” says Blum. “You can also do single 100-gigabit breakouts or you can do 800-gigabit-to-800-gigabit traffic.”

Click to read more ...

Thursday
Apr222021

COBO adds co-packaged optics to its agenda

The Consortium of On-Board Optics (COBO) is progressing with its work to create specifications for co-packaged optics.

The decision to address co-packaged optics by an organisation established to promote on-board optics reflects the significant industry interest co-packaged optics has gained in the last year.

So says Brad Booth, director, leading edge architecture pathfinding team in Azure hardware systems and infrastructure at Microsoft.

Source: COBO

The COBO work also complements that of the OIF which has set up its own co-packaged optics framework

“We have a different collection of members [to the OIF],” says Booth. “Our members are very strong on optical connectivity and materials whereas the OIF is known for its electrical interface work and module activities like 400ZR.”

Click to read more ...

Thursday
Feb112021

Enabling 800-gigabit optics with physical layer ICs 

Broadcom recently announced a family of 800-gigabit physical layer (PHY) chips. The device family is the company’s first 800-gigabit ICs with 100-gigabit input-output (I/O) interfaces.

Source: Broadcom

Moving from 50-gigabit to 100-gigabit-based I/O enables a new generation of 800-gigabit modules aligned with the latest switch chips.

“With the switch chip having 100-gigabit I/Os, PHYs are needed with the same interfaces,” says Machhi Khushrow, senior director of marketing, physical layer products division at Broadcom.

Broadcom’s latest 25.6 terabit-per-second (Tbps) Tomahawk 4 switch chip using 100-gigabit I/O was revealed at the same time.

Click to read more ...

Sunday
Dec202020

The compound complexity of co-packaged optics 

Part 1: The OIF’s co-packaging initiative

Large-scale data centres consume huge amounts of power; one building on a data centre campus can consume 100MW. But there is a limit as to the overall power that can be supplied.

Jeff Hutchins

The challenge facing data centre operators is that networking, used to link the equipment inside the data centre, continues to consume more and more power.

That means less power remains for the servers; the compute that does the revenue-generating work.

This is forcing a rethink regarding networking and explains the growing interest in co-packaged optics, a technique that effectively adds optical input-output (I/O) to a chip.

Two industry organisations - the OIF and The Consortium for On-Board Optics (COBO) - have each started work to identify the requirements needed for co-packaged optics adoption.

Click to read more ...

Wednesday
Jul082020

Silicon Photonics spills over into new markets

Part 1: Yole market analysis

 

The market for silicon photonics is set to grow eightfold by 2025.

So claims market research firm, Yole Développement, in its latest report on silicon photonics, a technology that enables optical components to be made on a silicon substrate.

Silicon photonics is also being used in new markets although optical transceivers will still account for the bulk of the revenues in 2025.

Click to read more ...