What is the best way to send large amounts of data between locations? Its a question made all the more relevant with the advent of AI, and one that has been preoccupying the Innovative Optical and Wireless Network (IOWN) Global Forum that now has over 160 member companies and organisations
Masahisa KawashimaOptical networking has long established itself as the high-speed communications technology of choice for linking data centres or large enterprises’ sites.
The IOWN Global Forum aims to take optical networking a step further by enabling an all-optical network, to reduce the energy consumption and latency of communication links. Latency refers to the time it takes transmitted data to start arriving at the receiver site.
"The IOWN all-photonic network is the infrastructure for future enterprise networking," says Masahisa Kawashima, IOWN technology director, IOWN development office, NTT Technology working group chair, IOWN Global Forum.
“The main significance of IOWN is setting a roadmap,” says Jimmy Yu, vice president and optical transport senior analyst at Dell’Oro. “It helps component and systems companies understand what technology and architectures that companies, such as NTT, are interested in for a next-generation optical and wireless network. It also fosters industry collaboration.”
IOWN architecture
The IOWN Global Forum's all-optical network (APN) is to enable optical connectivity from edge devices to data centres at speeds exceeding 100 gigabits-per-second (Gbps).
The Forum envisions energy and latency performance improvements by driving optics to the endpoints. Linking endpoints will require a staged adoption of photonic technology as it continues to mature.
Jimmy Yu
Professor Ioannis Tomkos, a member of the Optical Communications Systems & Networks (OCSN) Research Lab/Group at the Electrical and Computer Engineering Department at the University of Patras, says the aim of the IOWN Global Forum is to gradually replace electronics-based transmission, switching, and even signal processing functions with photonics. The OCSN Group recently joined the IOWN Global Forum.
The Forum has defined a disaggregated design for the all-photonic network. The following stages will include using optics to replace copper interconnect within platforms, interfacing photonics to chips, and, ultimately, photonic communications within a chip.
“If information-carrying light signals can remain in the optical domain and avoid opto-electronic and electro-optical conversions, that will ensure enhanced bandwidth and much reduced power consumption per bit,” says Tomkos.
The IOWN Global Forum was created in 2019 by Japanese service provider, NTT, Sony, and Intel. Since then, it has grown to over 160 members, including cloud players Google, Microsoft, and Oracle, telecom service providers British Telecom, Orange, KDDI, Telefónica, and companies such as Nvidia.
The Forum has developed an IOWN framework that includes the all-photonic network, digital twin computing (DTC), and a ‘cognitive foundation’ (CF). Digital twin computing enables the creation of virtual representations of physical systems, while the cognitive foundation is the architecture's brain, allocating networking and computing resources as required.
“We expect future societies will be more data-driven and there will be many applications that collect huge real-time sensor data and analyse them,” says Kawashima. “The IOWN all-photonic network and disaggregated computing platforms will enable us to deploy digital twin application systems in an energy-efficient way.”
Optical infrastructure
The IOWN Global Forum's all-photonic network uses open standards, such as the OpenROADM (Open reconfigurable optical add-drop multiplexing) Multi-Source Agreement (MSA), the OIF and the OpenZR+ MSA pluggable coherent optics, and the OpenXR Optics Forum standards. The IOWN Global Forum also adheres to the ‘white box’ platform designs defined by the Telecom Infra Project (TIP).
“There is a lot of similarity with the approach and objectives of TIP,” says an unnamed industry veteran who has observed the IOWN Global Forum’s organisation since its start but whose current employer is not a member. “Although the scope is not the same, I cannot help but wonder why we don't combine the two as an industry.”
Kawashima says that optical hardware, such as ROADMs, pluggable optics, and transponder boards, is located at one site and operated by one organisation. Now, the Forum has disaggregated the design to enable the ROADM and transponders to be in different locations: the transponder can be deployed at a customer's premises, remote from the ROADM's location.
“We allow the operator of the switch node to be different from the operator of the aggregator node, and we allow the operator of the transponder node to be different from the operator of the ROADM nodes," says Kawashima.
The disaggregation goal is to encourage the growth of a multi-operator ecosystem, unlike how optical transport is currently implemented. It is also the first stage in making the infrastructure nodes all-optical. Separating the transponder and the ROADMs promises to reduce capital expenditure, as the transceiver nodes can be upgraded separately from the ROADMs that can be left unchanged for longer.
Kawashima says that reducing infrastructure capital expenditure promises reduced connectivity prices: "Bandwidth costs will be cheaper."
Service providers can manage the remote transponders at the customers' sites, creating a new business model for them.
The speed and reach goals of the all-photonic network. Source: IOWN
Early use cases
IOWN has developed several use cases as it develops the technology.
One is a data centre interconnect for financial service institutions that conduct high-frequency trading across geographically dispersed sites.
Another is remote video production for the broadcast industry. Here, the broadcast industry would use an all-photonic network to connect the site where the video feed originates to the cloud, where the video production work is undertaken.
A third use case is for AI infrastructure. An enterprise would use the all-photonic network to link its AI product development engineers to GPU resources hosted in the cloud.
If the network is fast enough and has sufficiently low latency, the GPUs can source data from the site, store it in their memory, process it, and return the answer. The aim is for enterprises not to need to upload and store their data in the cloud. "So that customers do not have to be worried about data leakages," says Kawashima.
The Forum also publishes documents. "Once the proof-of-concept is completed, that means that our solution is technically proven and is ready for delivery," says Kawashima.
Goals
At OFC 2025, held earlier this year, NTT, NTTCom, Orange, and Telefónica showcased a one terabit-per-second optical wavelength circuit using the IOWN all-photonics network.
Prof. Ioannis Tomkos
The demonstration featured a digital twin of the optical network, enabling automated configuration of high-speed optical wavelength circuits. The trial showcased the remote control of data centre communication devices using an optical supervisory channel.
The Forum wants to prove the technical feasibility of the infrastructure architecture by year-end. It looks to approve the remote GPUs and financial services use cases.
"What we are trying to achieve this year is that the all-photonic network is commercially operable, as are several use cases in the enterprise networking domain," says Kawashima.
IOWN's ultimate success will hinge on the all-photonic network’s adoption and economic viability. For Kawashima, the key to the system architecture is to bring significant optical performance advantages.
Tomkos cautions that this transformation will not happen overnight and not without the support of the global industry and academic community. But the promise is growth in the global network’s throughput and reduced latency in a cost and power-efficient way.