counter for iweb
Silicon Photonics

Published book, click here

Entries in silicon photonics (53)


Acacia looks to co-package its coherent PIC and DSP-ASIC

  • Acacia Communications is working to co-package its coherent DSP and its silicon photonics transceiver chip. 
  • The company is also developing a digital coherent optics module that will support 400 gigabit. 

Acacia Communications is working to co-package its coherent DSP and its silicon photonics transceiver chip. The line-side optical transceiver company is working on a digital coherent optics module that will support 400 gigabits.

Acacia announced last November that it was sampling the industry’s first CFP2 Digital Coherent Optics (CFP2-DCO) that supports 100- and 200-gigabit line rates. The CFP2-DCO integrates the DSP and its silicon photonics chip within a CFP2 module, which is half the size of a CFP module, with each chip packaged separately.

Click to read more ...


NeoPhotonics showcases a CFP2-ACO roadmap to 400G

NeoPhotonics has begun sampling its CFP2-ACO, a pluggable module for metro and long-haul optical transport. 

The company demonstrated the CFP2-ACO module transmitting at 100 gigabit using polarisation multiplexed, quadrature phase-shift keying (PM-QPSK) modulation at the recent OFC show. The line-side module is capable of transmitting over 1,000km and also supports PM-16QAM that doubles capacity over metro network distances.


Ferris LipscombThe CFP2-ACO is a Class 3 design: the control electronics for the modulator and laser reside on the board, alongside the coherent DSP-ASIC chip.

At OFC, NeoPhotonics also demonstrated single-wavelength 400-gigabit transmission using more advanced modulation and a higher symbol rate, and a short-reach 100-gigabit link for inside the data centre using 4-level pulse-amplitude modulation (PAM4) signalling. 

Click to read more ...


Imec gears up for the Internet of Things economy  

Luc Van den hove is talking in the darkened ballroom in a hotel next to the brilliantly sunlit marina in Herzliya.

It is the imec's CEO's first trip to Israel and around us the room is being prepared for an afternoon of presentations the Belgium nanoelectronics research centre will give on its work in such areas as the Internet of Things and 5G wireless to an audience of Israeli start-ups and entrepreneurs.


Luc Van den hoveImec announced in February its plan to merge with iMinds, a Belgium research centre specialising in systems software and security, a move that will add 1,000 staff to imec's 2,500 researchers.

At first glance, the world-renown semiconductor process technology R&D centre joining forces with a systems house is a surprising move. But for Van den hove, it is a natural development as the company continues to grow from its technology origins to include systems-based research.

Click to read more ...


US invests $610 million to spur integrated photonics 

The US government has set up its latest manufacturing initiative, the sixth of nine, to address photonic integrated circuits (PICs). The $610 million venture is a combination of public and private funding: $110 million from the Department of Defense, $250 million from the state of New York and the rest private contributions.

Prof. Duncan Moore

Dubbed the American Institute for Manufacturing Integrated Photonics (AIM Photonics), the venture has attracted 124 partners includes 20 universities and over 50 companies.

The manufacturing innovation institute will be based in Rochester, New York, and will be led by the Research Foundation for the State University of New York. A key goal is that the manufacturing institute will continue after the initiative is completed in early 2021.

Click to read more ...


Data centres to give silicon photonics its chance  

Part 4: A large data centre operator’s perspective

The scale of modern data centres and the volumes of transceivers they will use are going to have a significant impact on the optical industry. So claims Facebook, the social networking company.

Katharine Schmidtke

Facebook has been vocal in outlining the optical requirements it needs for its large data centres.

The company will use duplex single-mode fibre and has chosen the 2 km mid-reach 100 gigabit CWDM4 interface to connect its equipment.

But the company remains open regarding the photonics used inside transceivers. “Facebook is agnostic to technology,“ says Katharine Schmidtke, strategic sourcing manager, optical technology at Facebook. “There are multiple technologies that meet our requirements.” 

Click to read more ...


Verizon tips silicon photonics as a key systems enabler  

Verizon's director of optical transport network architecture and design, Glenn Wellbrock, shares the operator’s thoughts regarding silicon photonics.


Part 3: An operator view

Glenn Wellbrock is upbeat about silicon photonics’ prospects. Challenges remain, he says, but the industry is making progress. “Fundamentally, we believe silicon photonics is a real enabler,” he says. “It is the only way to get to the densities that we want.”


Glenn Wellbrock

Wellbrock adds that indium phosphide-based photonic integrated circuits (PICs) can also achieve such densities.

But there are many potential silicon photonics suppliers because of its relatively low barrier to entry, unlike indium phosphide. "To date, Infinera has been the only real [indium phosphide] PIC company and they build only for their own platform,” says Wellbrock.

Click to read more ...


The quiet period of silicon photonics 

Michael Hochberg discusses his book on silicon photonics and the status of the technology. Hochberg is director of R&D at Coriant's Advanced Technology Group. Previously he has been an Associate Professor at the University of Delaware and at the National University of Singapore. He was also a director at the Optoelectronic Systems Integration in Silicon (OpSIS) foundry, and was a co-founder of silicon photonics start-up, Luxtera.


Part 2: An R&D perspective

If you are going to write a book on silicon photonics, you might as well make it different. That is the goal of Michael Hochberg and co-author Lukas Chrostowski, who have published a book on the topic.

Michael HochbergHochberg says there is no shortage of excellent theoretical textbooks and titles that survey the latest silicon photonics research. Instead, the authors set themselves the goal of creating a design manual to help spur a new generation of designers.

The book aims to provide designers with all the necessary tools and know-how to develop silicon photonics circuits without needing to be specialists in optics.

Click to read more ...