counter for iweb

Entries in interposer (2)

Tuesday
Mar072017

Stitching together disaggregated chips

The Optical Internetworking Forum (OIF) has begun work on a 112-gigabit electrical interface to connect chips in a multi-chip module.

The ultra-short-reach electrical interface for multi-chip modules adds to the OIF's ongoing CEI-112G project, started in August 2016, to develop a 112 gigabit-per-second (Gbps) serial electrical interface for next-generation optical modules. 

Source: Gazettabyte, OIF data. The year 2018 is an estimate.

Click to read more ...

Sunday
Jun282015

Altera’s 30 billion transistor FPGA 

  • The Stratix 10 features a routing architecture that doubles overall clock speed and core performance 
  • The programmable family supports the co-packaging of transceiver chips to enable custom FPGAs  
  • The Stratix 10 family supports up to 5.5 million logic elements
  • Enhanced security features stop designs from being copied or tampered with      

Altera has detailed its most powerful FPGA family to date. Two variants of the Stratix 10 family have been announced: 10 FPGAs and 10 system-on-chip (SoC) devices that include a quad-core 64-bit architecture Cortex-A53 ARM processor alongside the programmable logic. The ARM processor can be clocked at up to 1.5 GHz.

The Stratix 10 family is implemented using Intel’s 14nm FinFET process and supports up to 5.5 million logic elements. The largest device in Altera’s 20nm Arria family of FPGAs has 1.15 million logic elements, equating to 6.4 billion transistors. “Extrapolating, this gives a figure of some 30 billion transistors for the Stratix 10,” says Craig Davis, senior product marketing manager at Altera. 

 

Altera's HyperFlex routing architecture. Shown (pointed to by the blue arrow) are the HyperFlex registers that sit at the junction of the interconnect traces. Also shown are the adaptive logic module blocks. Source: Altera.

Click to read more ...